Phone duration modeling using gradient tree boosting

نویسندگان

  • Junichi Yamagishi
  • Hisashi Kawai
  • Takao Kobayashi
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigating Efficient Feature Representation Methods and Training Objective for BLSTM-Based Phone Duration Prediction

Accurate modeling and prediction of speech-sound durations are important in generating natural synthetic speech. This paper focuses on both feature and training objective aspects to improve the performance of the phone duration model for speech synthesis system. In feature aspect, we combine the feature representation from gradient boosting decision tree (GBDT) and phoneme identity embedding mo...

متن کامل

Weighted neural network ensemble models for speech prosody control

In text-to-speech synthesis systems, the quality of the predicted prosody contours influences quality and naturalness of synthetic speech. This paper presents a new statistical model for prosody control that combines an ensemble learning technique using neural networks as base learners with feature relevance determination. This weighted neural network ensemble model was applied for both, phone ...

متن کامل

結合音長與發音特徵於GTB 之腔調化語音辨識 (Accented Speech Recognition based on Gradient Tree Boosting with Duration and Articulation Features) [In Chinese]

Using speech as the input of the human-machine interface, we need to consider the effect of the pronunciation variations on speech recognition. We usually use the speaker adaptation and speech adaptation technique to solve above problem, but the result of accent speech recognition is not good enough. This paper presents a framework to combine two phone models to reconstruct acoustic model. Firs...

متن کامل

Collective Entity Disambiguation with Structured Gradient Tree Boosting

We present a gradient-tree-boosting-based structured learning model for jointly disambiguating named entities in a document. Gradient tree boosting is a widely used machine learning algorithm that underlies many topperforming natural language processing systems. Surprisingly, most works limit the use of gradient tree boosting as a tool for regular classification or regression problems, despite ...

متن کامل

Modeling MOOC Dropouts

In this project, we model MOOC dropouts using user activity data. We have several rounds of feature engineering and generate features like activity counts, percentage of visited course objects, and session counts to model this problem. We apply logistic regression, support vector machine, gradient boosting decision trees, AdaBoost, and random forest to this classification problem. Our best mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2008